18 research outputs found

    The attitude of students towards their secondary school subjects

    Full text link
    Thesis (Ed.M.)--Boston University, 1948. This item was digitized by the Internet Archive

    Analysis of nitrogen oxides (NOx) in the exhaled breath condensate (EBC) of subjects with asthma as a complement to exhaled nitric oxide (FeNO) measurements: a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The study of pulmonary biomarkers with noninvasive methods, such as the analysis of exhaled breath condensate (EBC), provides a useful approach to the pathophysiology of asthma. Although many recent publications have applied such methods, numerous methodological pitfalls remain. The first stage of our study consisted of validating methods for the collection, storage and analysis of EBC; we next sought to clarify the utility of analysing nitrogen oxides (NOx) in the EBC of asthmatics, as a complement to measuring exhaled nitric oxide (FeNO).</p> <p>Methods</p> <p>This hospital-based cross-sectional study included 23 controls matched with 23 asthmatics. EBC and FeNO were performed and respiratory function measured. Intra-assay and intra-subject reproducibility were assessed for the analysis of NOx in the EBC of 10 healthy subjects.</p> <p>Results</p> <p>The intraclass correlation coefficient (ICC) was excellent for intra-assay reproducibility and was moderate for intra-subject reproducibility (Fermanian's classification). NOx was significantly higher in asthmatics (geometric mean [IQR] 14.4 ÎŒM [10.4 - 19.7] vs controls 9.9 ÎŒM [7.5 - 15.0]), as was FeNO (29.9 ppb [17.9 - 52.4] vs controls 9.6 ppb [8.4 - 14.2]). FeNO also increased significantly with asthma severity.</p> <p>Conclusions</p> <p>We validated the procedures for NOx analysis in EBC and confirmed the need for assays of other biomarkers to further our knowledge of the pathophysiologic processes of asthma and improve its treatment and control.</p

    Bioinorganic Chemistry of Alzheimer’s Disease

    Get PDF

    The Effect of Adding CO2 to Hypoxic Inspired Gas on Cerebral Blood Flow Velocity and Breathing during Incremental Exercise

    Get PDF
    Hypoxia increases the ventilatory response to exercise, which leads to hyperventilation-induced hypocapnia and subsequent reduction in cerebral blood flow (CBF). We studied the effects of adding CO2 to a hypoxic inspired gas on CBF during heavy exercise in an altitude naĂŻve population. We hypothesized that augmented inspired CO2 and hypoxia would exert synergistic effects on increasing CBF during exercise, which would improve exercise capacity compared to hypocapnic hypoxia. We also examined the responsiveness of CO2 and O2 chemoreception on the regulation ventilation (E) during incremental exercise. We measured middle cerebral artery velocity (MCAv; index of CBF), E, end-tidal PCO2, respiratory compensation threshold (RC) and ventilatory response to exercise (E slope) in ten healthy men during incremental cycling to exhaustion in normoxia and hypoxia (FIO2 = 0.10) with and without augmenting the fraction of inspired CO2 (FICO2). During exercise in normoxia, augmenting FICO2 elevated MCAv throughout exercise and lowered both RC onset andE slope below RC (P&lt;0.05). In hypoxia, MCAv and E slope below RC during exercise were elevated, while the onset of RC occurred at lower exercise intensity (P&lt;0.05). Augmenting FICO2 in hypoxia increased E at RC (P&lt;0.05) but no difference was observed in RC onset, MCAv, or E slope below RC (P&gt;0.05). The E slope above RC was unchanged with either hypoxia or augmented FICO2 (P&gt;0.05). We found augmenting FICO2 increased CBF during sub-maximal exercise in normoxia, but not in hypoxia, indicating that the 'normal' cerebrovascular response to hypercapnia is blunted during exercise in hypoxia, possibly due to an exhaustion of cerebral vasodilatory reserve. This finding may explain the lack of improvement of exercise capacity in hypoxia with augmented CO2. Our data further indicate that, during exercise below RC, chemoreception is responsive, while above RC the ventilatory response to CO2 is blunted

    Exhaled breath condensate: methodological recommendations and unresolved questions.

    No full text
    Collection of exhaled breath condensate (EBC) is a noninvasive method for obtaining samples from the lungs. EBC contains large number of mediators including adenosine, ammonia, hydrogen peroxide, isoprostanes, leukotrienes, nitrogen oxides, peptides and cytokines. Concentrations of these mediators are influenced by lung diseases and modulated by therapeutic interventions. Similarly EBC pH also changes in respiratory diseases. The aim of the American Thoracic Society/European Respiratory Society Task Force on EBC was to identify the important methodological issues surrounding EBC collection and assay, to provide recommendations for the measurements and to highlight areas where further research is required. Based on the currently available evidence and the consensus of the expert panel for EBC collection, the following general recommendations were put together for oral sample collection: collect during tidal breathing using a noseclip and a saliva trap; define cooling temperature and collection time (10 min is generally sufficient to obtain 1-2 mL of sample and well tolerated by patients); use inert material for condenser; do not use resistor and do not use filter between the subject and the condenser. These are only general recommendations and certain circumstances may dictate variation from them. Important areas for future research involve: ascertaining mechanisms and site of exhaled breath condensate particle formation; determination of dilution markers; improving reproducibility; employment of EBC in longitudinal studies; and determining the utility of exhaled breath condensate measures for the management of individual patients. These studies are required before recommending this technique for use in clinical practice

    Mixing models and stable isotopes as tools for research on feeding aquatic organisms

    No full text
    corecore